Are ipsilateral motor evoked potentials subject to intracortical inhibition?
نویسندگان
چکیده
Paired-pulse transcranial magnetic stimulation (TMS) can be used to examine intracortical inhibition in primary motor cortex (M1), termed short-interval intracortical inhibition (SICI). To our knowledge, SICI has only been demonstrated in contralateral motor evoked potentials (MEPs). Ipsilateral MEPs (iMEPs) are assumed to reflect excitability of an uncrossed oligosynaptic pathway, and can sometimes be evoked in proximal upper-limb muscles using high-intensity TMS. We examined whether iMEPs in the biceps brachii (BB) would be suppressed by subthreshold conditioning, therefore demonstrating SICI of iMEPs. TMS was delivered to the dominant M1 to evoke conditioned (C) and nonconditioned (NC) iMEPs in the nondominant BB of healthy participants during weak bilateral elbow flexion. The conditioning stimulus intensities tested were 85%, 100%, and 115% of active motor threshold (AMT), at 2 ms and 4 ms interstimulus intervals (ISI). The iMEP ratio (C/NC) was calculated for each condition to assess the amount of inhibition. Inhibition of iMEPs was present at 2 ms ISI with 100% and 115% AMT (bothP< 0.03), mediated by a reduction in persistence and size (allP< 0.05). To our knowledge, this is the first demonstration of SICI of iMEPs. This technique may be useful as a tool to better understand the role of ipsilateral M1 during functional motor tasks.
منابع مشابه
Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
The present study aimed to further investigate whether the intracortical neural circuits within the primary motor cortex (M1) are modulated during ipsilateral voluntary finger movements. Single- and paired-pulse (interstimulus intervals, ISIs; 3 ms and 12 ms) transcranial magnetic stimulations of the left M1 were applied to elicit motor evoked potential (MEP) in the right first dorsal interosse...
متن کاملHomologous Muscle Contraction during Unilateral Movement Does Not Show a Dominant Effect on Leg Representation of the Ipsilateral Primary Motor Cortex
Co-activation of homo- and heterotopic representations in the primary motor cortex (M1) ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS) studies have revealed that the size of the co-activ...
متن کاملSelective activation of ipsilateral motor pathways in intact humans.
It has been proposed that ipsilateral motor pathways play a role in the control of ipsilateral movements and recovery of function after injury. However, the extent to which ipsilateral motor pathways are engaged in voluntary activity in intact humans remains largely unknown. Using transcranial magnetic stimulation over the arm representation of the primary motor cortex, we examined ipsilateral ...
متن کاملPremotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans.
Recent studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the premotor cortex (PM) modifies the excitability of the ipsilateral primary motor cortex (M1). Transcranial direct current stimulation (tDCS) is a new method to induce neuroplasticity in humans non-invasively. tDCS generates neuroplasticity directly in the cortical area under the electrode, but might also ...
متن کاملMuscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition
The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 115 3 شماره
صفحات -
تاریخ انتشار 2016